Equidimensionality of Convolution Morphisms and Applications to Saturation Problems
نویسنده
چکیده
Fix a split connected reductive group G over a field k, and a positive integer r. For any r-tuple of dominant coweights μi of G, we consider the restriction mμ• of the r-fold convolution morphism of Mirkovic-Vilonen [MV1, MV2] to the twisted product of Schubert varieties corresponding to μ•. We show that if all the coweights μi are minuscule, then the fibers of mμ• are equidimensional varieties, with dimension the largest allowed by the semi-smallness of mμ• . We derive various consequences: the equivalence of the nonvanishing of Hecke and representation ring structure constants, and a saturation property for these structure constants, when the coweights μi are sums of minuscule coweights. This complements the saturation results of Knutson-Tao [KT] and Kapovich-Leeb-Millson [KLM]. We give a new proof of the P-R-V conjecture in the “sums of minuscules” setting. Finally, we generalize and reprove a result of Spaltenstein pertaining to equidimensionality of certain partial Springer resolutions of the nilpotent cone for GLn.
منابع مشابه
Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملApplications of convolution and subordination to certain $p$-valent functions
In this paper we considered some new classes of multivalent functions by using Aouf-Silverman-Srivastava operator and derived some important results using convolution and subordination technique. This new class is an extension of a class which introduced before.
متن کاملSome Results on Convex Spectral Functions: I
In this paper, we give a fundamental convexity preserving for spectral functions. Indeed, we investigate infimal convolution, Moreau envelope and proximal average for convex spectral functions, and show that this properties are inherited from the properties of its corresponding convex function. This results have many applications in Applied Mathematics such as semi-definite programmings and eng...
متن کاملSubordination and Superordination Properties for Convolution Operator
In present paper a certain convolution operator of analytic functions is defined. Moreover, subordination and superordination- preserving properties for a class of analytic operators defined on the space of normalized analytic functions in the open unit disk is obtained. We also apply this to obtain sandwich results and generalizations of some known results.
متن کاملFree Vibration of Annular Plates by Discrete Singular Convolution and Differential Quadrature Methods
Plates and shells are significant structural components in many engineering and industrial applications. In this study, the free vibration analysis of annular plates is investigated. To this aim, two different numerical methods including the differential quadrature and the discrete singular convolution methods are performedfor numerical simulations. Moreover, the Frequency values are obtained v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005